fx-570c

Casio fx-570c, fx-570MS, fx-991MS 取扱説明書

  • CASIO fx-570MSとfx-991MSの取扱説明書の内容を理解しました。高度な計算機能、複素数計算、行列・ベクトル計算、統計処理、微積分計算、単位変換、科学定数など、多様な機能についてご質問にお答えできます。お気軽にご質問ください。
  • fx-570MSとfx-991MSの電源は?
    複素数計算はどのモードで行いますか?
    行列計算は最大何行何列までできますか?
    微分計算を行う際の角度単位は?
    単位変換は何種類できますか?
fx-570MS
fx-991MS
CA 310029-001V06
J
http://www.casio.co.jp/edu/
SA0403-E Printed in China
151-8543 1-6-2
1
Eng
n
2
fx-95MS/fx-100MS/fx-570MS/
fx-912MS (fx-115MS)/fx-991MS
3
CMPLX
fx-570MS/fx-991MS
<fx-570MS/fx-991MS>
COMP F 1
CMPLX F 2
SD F F 1
REG F F 2
nBASE F F 3
EQN F F F 1
MAT F F F 2
VCT F F F 3
FDeg, Rad
A B 2(Mode) =
COMP
Deg
Norm 1/Eng OFF
abi
4
COMP
ab/c
Dot
n
BASE Eng
BASE
Disp
COMP CMPLX SD REG
SD REG
COMP CMPLX Deg Rad
Gra
COMP
COMP ............................................................ F 1
1 + 1 =2 + 2 =3 + 3 =
3[
]1 + 1 A [(COPY)
1 + 1 : 2 + 2 : 3 + 3
3
5
=
179
COMP CMPLX
-Y = X2 + 3X – 12 X 7
Y
58
X 8
Y
76
p y p u p x K + 3 p x , 12
C
X? 7 7 =
X? 8 C 8 =
-A
B C
B=14 mC=2 sD=9.8 m s2
A
A=
16.8
B AC – DC2
CMPLX
COMP
1
2
6
COMP
p 2 p u p 1 - p k ,
R 1 \ 2 T - p h - p k K
A I
(B?) 14 =
(A?) ]
(C?) 2 =
(D?) 9 l 8 =
[ [
(A?) A I
u
u
uy = sin x
u
y exy1/x
uyx
0
COMP
COMP ............................................................ F 1
7
Eng
F
1
Disp
1Eng 1 2
1Eng ON Eng “Eng”
2Eng OFF Eng “Eng”
Eng Eng 9
Eng
k( ) Ak103
M( ) AM106
G( ) Ag109
T( ) At1012
m( ) Am10
-
3
µ
( ) AN10
-
6
n( ) An10
-
9
p( ) Ap10
-
12
f( ) Af10
-
15
Eng 11000
Eng
1100m ( ) × 5
µ
( ) = 500n ( )
F ..... 1Disp 1
0.
Eng
100 A m - 5 A N =
500.
1
m
×
5 n
µ
29 ÷ 10 = 0.9m ( )
F ..... 1Disp 1
0.
Eng
COMP
CMPLX
EQN
8
CMPLX
9 \ 10 =
900.
9
1 m
A P
0.9
J
900.
9
1 m
31k ( ) × 1k ( ) = 1M ( )
F ..... 1Disp 1
0.
Eng
1 A k - 1 A k =
1.
1
k
×
1
k M
41T ( ) × 1000000000 = 1 × 1021
F ..... 1Disp 1
0.
Eng
1 A t - 1000000000 =
1.
1
T
×
1
21
Eng 11000
CMPLX
CMPLX ........................................................... F 2
Deg,Rad,Gra
CMPLX A, B, C, M
D, E, F, X, Y
“RI
Ar
CMPLX
Eng
Eng
9
-2+3i)4+5i)
6
8
i
6 2 + 3 i + 4 + 5 i =
8iA r
z abi
r
r
13+4i r
Deg r
5
53.13010235
°
(r
5
) A A R 3 + 4 i T =
(
53.13010235
°)A a R 3 + 4 i T =
r
2 2 45
1
iL2AQ45 =
(Deg )A r
r
Ar
10
BASE
-1
i
1.414213562 45
(Deg )1 + i A Y = A r
L 2 A Q 45 A Z = A r
abi
r
F
1
Disp
1r1 2
1(a+bi):
2(r
): r
z = a+bi z = abi
-1.23 + 2.34i
1.23 – 2.34
i
A S R 1 l 23 + 2 l 34 i T =
A r
n
nBASE
BASE ........................................................ F F 3
10 2816
n
11
2 8 16 2
n
and or xor
xnor Not Neg
1101112 + 1101022
(
1100012
)
t b
0.
b
10111 + 11010 =
276548 ÷ 1210 8
(
5168
)
t o
0.
o
l l l 4(o)
7654 \
l l l 1(d)12 =
312016
or 1101216 10
(
12d16
,
30110
)
t h
0.
H
120 l 2(or)
l l l 3(b)1101=
K
42210 2 8 16
(
101102 , 268 , 16 16
)
2t b
0.
b
21000000000 <x<1111111111
0<x<0111111111
84000000000 <x<7777777777
0<x<3777777777
10
-
2147483648 <x<2147483647
16 80000000 <x<FFFFFFFF
0<x<7FFFFFFF
2
16
8
10
12
SD
REG
SD
l l l 1(d) 22 =
10110.
b
8o
26.
o
16 h
16.
H
551310 2
2t b
0.
b
l l l 1(d) 513 =
aMthERROR
b
Math ERROR
SD
SD ............................................................ F F 1
SD REG | S
A D
1
2
3
4
P
(
Q
(
R
(
t
1 4
P(t)R(t)Q(t)
13
COMP
-x
x = 53 (
t
)
P(t
)
55, 54, 51, 55, 53, 53, 54, 52
(t =
0.284747398
, P(t) =
0.38974
)
55 S 54 S 51 S 55 S
53 S S 54 S 52 S
53 A D 4(t) =
A D 1( P( ) D 0.28 F =
COMP
COMP ............................................................ F 1
x
a x x3
A J P a P x T
- y 3x2– 5x+ 2 x2
xx=2 × 10–4
7
A J 3 p x K , 5 p x + 2 P 2 P
2 e D 4 T =
x
Rad
Radian
14
COMP
MAT
COMP
COMP ............................................................. F 1
x
a, b n N
= 2n4
d
P a P b P n F
- (2 x 2 + 3 x + 8)
dx =
150.6666667
n = 6
d 2 p x K + 3 p x +
8 P 1 P 5 P 6 T =
n1~9
Rad
Radian
3 3 3
MAT
MAT .................................................... F F F 2
5
1
15
A, B, C 3
MatAns
2
1
Aj1Dim A, B, C
t
Aj2Edit A, B, C
- A = B =
12
4 0
–2 5
[
]
[ ]
( )
3–8 5
–4 0 12
12 –20 –1
[ ]
–1 0 3
2–4 1
M
atA
23
2 3
16
( A 32) A j 1(Dim) 1(A) 3 = 2 =
( ) 1 = 2 = 4 = 0 = D 2 = 5 = t
( B 23) A j 1(Dim) 2(B) 2 = 3 =
( ) D 1 = 0 = 3 = 2 = D 4 = 1 = t
(MatAMatB) A j 3(Mat) 1(A) -
A j 3(Mat) 2(B) =
- C = 33C
( C 22) A j 1(Dim) 3(C) 2 = 2 =
( ) 2 = D 1 = D 5 = 3 = t
(3MatC) 3 - A j 3(Mat) 3(C) =
- A =
73
( A 33) A j 1(Dim) 1(A) 3 = 3 =
( ) 2 = D 1 = 6 = 5 = 0 = 1 =
3 = 2 = 4 = t
(DetMatA) A j r 1(Det)
A j 3(Mat) 1(A) =
[ ]
[ ]
(
)
2–1
–5 3
6–3
–15 9
[ ]
2–1 6
501
324
17
- B =
( B 23) A j 1(Dim) 2(B) 2 = 3 =
( ) 5 = 7 = 4 = 8 = 9 = 3 = t
(TrnMatB) A j r 2(Trn)
A j 3(Mat) 2(B) =
- C =
( C 33) A j 1(Dim) 3(C) 3 = 3 =
( ) D 3 = 6 = D 11 = 3 = D 4 =
6 = 4 = D 8 = 13 = t
(MatC–1)A j 3(Mat) 3(C) a =
0
[
]
( )
58
7 9
4 3
[ ]
–3 6 –11
3–4 6
4–8 13
[ ]
( )
–0.4 1 –0.8
–1.5 0.5 –1.5
–0.8 0 –0.6
[ ]
( )
[ ]
574
893
18
[ ]
(
)
0.4 1 0.8
1.5 0.5 1.5
0.8 0 0.6
VCT
-
(AbsMatAns) A A A j 3(Mat) 4(Ans) =
3 3
VCT
VCT .................................................... F F F 3
A,B,C 3
VctAns
Az1Dim A, B, C
0.
Vc tA1
19
er
t
Az2Edit A, B, C
-A= 1 –2 3 B= 4 5 –6
(5 3 –3)
(3 A) A z 1(Dim) 1(A) 3 =
( ) 1 = D 2 = 3 = t
(3 B) A z 1(Dim) 2(B) 3 =
( ) 4 = 5 = D 6 = t
(VctA + VctB) A z 3(Vct) 1(A) +
A z 3(Vct) 2(B) =
-C= –7.8 9 5 5C
(–39 45)
(2 C) A z 1(Dim) 3(C) 2 =
( ) D 7 l 8 = 9 = t
(5VctC) 5 - A z 3(Vct) 3(C) =
/