Casio FX-375ESA 取扱説明書

  • CASIO fx-375ES A関数電卓の取扱説明書を読み込みました。基本操作から高度な計算機能、様々な計算モード、エラー処理、メモリー機能などについてご質問があればお気軽にお尋ねください。例えば、自然表示での計算方法や、特定の関数計算の方法など、詳細な情報をご提供できます。
  • 電源の入れ方と消し方は?
    コントラストの調整方法は?
    計算モードの切り替え方法は?
    計算結果を無理数表示するには?
    循環小数の入力方法は?
JA
RJA540302-001V01
fx-375ES A
https://edu.casio.jp
– 1 –
19(CLR)3(All)=(Yes)
– 2 –
12+-!A
!2)+!3=
1 S
SHIFT
1
1s(sin–1)1Y(INS)
ALPHA
S
Sy(A) S5(e)
i { }
CMPLX 41
DEC HEX BIN OCT { }
BASE-N n53
10
10
A -
a
z Deg
Z Rad
sin–1{D}
s
– 3 –
– 4 –
– 5 –
– 6 –
3 1
– 7 –
................................................................................ 1
..................................................................... 3
..................................................................... 6
.................................................................. 8
..................................... 9
..................................................... 12
.......................................... 17
.............................................................................. 19
(COMP)................................................................. 21
....................................... 23
............................................................ 24
.............................................................................. 27
................................................. 28
(COMP) ............................................................ 29
.............................................................................. 31
....................................................................... 40
(CMPLX) ........................................................... 41
(STAT) .................................................................. 42
n(BASE-N) ............................................................... 53
(EQN) ............................................................... 55
(TABLE) ............................... 58
.............................................................................. 60
.............................................................................. 60
.............................................................................. 62
..................................................................................... 69
.............................................................................. 69
....................................................................... 73
ID ...................................................................... 75
............................................................ 76
....................................... 84
.............................................................................. 86
– 8 –
O
1A OFF
1. 1N SETUP c8]CONT'
u
2. d e
3. A
A
S
1
A
S
M
STO 1t
(STO)
RCL t
STAT STAT
CMPLX CMPLX
7
8
CMPLX
– 9 –
9
FIX Fix
SCI Sci
Math
Disp
COMP N1(COMP)
CMPLX N2(CMPLX)
STAT N3(STAT)
BASE-N n2810 16 N4(BASE-N)
EQN N5(EQN)
TABLE N6(TABLE)
COMP
A
1. N
u
– 10 –
2.
u CMPLX 2
A
- 1N1(MthIO)1(MathO)
- 1N1(MthIO)2(LineO)
1N2(LineIO)
-
-
STAT BASE-N
A
1N3(Deg)
1N4(Rad)
1N5(Gra)
A
(Fix)
1N6(Fix)
0099
c
f
Math
– 11 –
(Sci) 1N7(Sci)
119 0 10
(Norm)
1N8(Norm)
1(Norm1) 2(Norm2)
Fix 0 9
100 7 14.286 Fix3
Sci 1 10
1 7 1.4286 10–1 Sci5
1.428571429 10–1 Sci0
Norm1 Norm2
Norm1 10–2 x, x 1010
Norm2 10–9 x, x 1010
1 200 5 10–3 Norm1 0.005 Norm2
A
1Nc1(ab/c)
1Nc2(d/c)
A
1Nc3(CMPLX)1(a+bi)
1Nc3(CMPLX)2(r )
A
FREQ 1Nc4(STAT)1(ON)
FREQ 1Nc4(STAT)2(OFF)
– 12 –
A
1f(x)1Nc5(TABLE)1(f(x))
2f(x), g(x)1Nc5(TABLE)2(f(x),g(x))
A
1Nc6(Rdec)1(ON)
1Nc6(Rdec)2(OFF)
A
1Nc7(Disp)1(Dot)
1Nc7(Disp)2(Comma)
(,)
(;)
19(CLR)1(Setup)=(Yes)
=
- 2 (5 4) 2 ( 3)
a 2(5+4)-
2*y3=
– 13 –
A sin cos '
sin(, cos(, tan(, sin–1(, cos–1(, tan–1(, sinh(, cosh(, tanh(, sinh–1(,
cosh–1(, tanh–1(, log(, ln(, e^(, 10^(, '(, 3'(, Abs(, Pol(, Rec(, (,
d/dx(, Σ(, P(, Q(, R(, arg(, Conjg(, Not(, Neg(, Rnd(, RanInt#(,
GCD(, LCM(
A
u ( 2 5+4
u 2 sin 30 2 '3
u 2 h123
u 20 A 2 π2i
2 Ran#
u
6 2 1 + 2 6 2 1 + 2 6 A 1 + 2 6 A 1 + 2
1 2 + 3 sin 30 1 2 + 3 sin 30
u
6 2π 6 2π2 2'2 2 2'2
4π2π 4π2π
u Pol Rec RanInt# ,
2 1
3A
'1c3dddd2
=
Math
Math
– 14 –
sin (30) 4
5A
'4c5dddds30)
=
A
14
] d
1111 2222 3333 444
'
e d
g
d e
Ad e
A
99
1 99 1
1 1
1
89
Math
Math
Math
Math
– 15 –
A
Y
1Y(INS)
1Y(INS)
=
d e
- 14 10 2 14 0 2
14/0*2=
e d
e d A
2 31 2
– 16 –
A
'1' ( log a,b &
10x1l $ex1i %'!3'
1! # 2w31wx3–1 E
616 " 7 17 F Σ
1& 8 Abs 1w Abs ( )
A
d e
A
- 1 2 3 4 '
1Y(INS)
!
'
'1' ( & 1i % ! 1l $ 6
1! # 16 " 1=Abs 717 F
1& 8
Math
Math
Math
– 17 –
-
'2π
=
1=
- '2 '8 3'2
A
1 !2e+!8=
2 !2e+!81=
' '
a. 'x2x3x–1
b.
c. Abs
d. CMPLX r 
'
Deg 15 x9 109
Rad 1
12 πx20π
Gra 50
3x10000
– 18 –
'
'2
'
a, b, c, d, e, f
1a100, 1 b1000, 1 c100
0d100, 0 e1000, 1 f 100
:
2'3 4 = 8'3'
35'2 3 = 148.492424 (= 105'2)
2 (3 – 2'5 ) = 6 – 4'5'
23 (5 – 2'3 ) = 35.32566285 (= 115 – 46'3 )
'2 + '3 + '8 = '3 + 3'2'
'2 + '3 + '6 = 5.595754113
u
u 3
'
cc f
a, c, da, c, d
'
:
3
: 1 '2'3 1 '2'3 4 2'6
8.898979486
± a'b, ± d ± a'b, ± a''b
±
d''e
c'
± '
±

'

a'b
+
d'e
c
a'b
+
d
'
e
cf
'3 + '2 = 10'3 + 11'2
11 10 110
– 19 –
'
: log3 '2 1.891334817
a!(k
·)
0.909090.... 0.90
··
a.a!(k
·)ja
12.3123123...
12.3
·12
·
- 1.428571428571... 1.4
·28571
·
A 1.a!(k
·)
ecifhb
- 1.0
·21
· + 2.3
·12
·
A 1.a!(k
·)acbe
+2.a!(k
·)dbc=
f
14
15 15
Math
Math
/